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Abstract
The infrared (IR) scaling laws for the massive sine-Gordon model (MSGM)
for the number d = 2 of spacetime dimensions are determined by means of the
functional form of the differential renormalization group (RG) with gliding
sharp cut-off k in momentum space in the local potential approximation.
This generically non-perturbative method enables one to determine the flow
of an arbitrary number of Fourier amplitudes (couplings) of the periodic
piece of the potential for any values of the ‘inverse temperature’ β2. It is
shown that the dimensionless couplings of the periodic piece of the blocked
potential exhibit the trivial IR scaling law, ∼k−2 due to the mass term breaking
periodicity explicitly. Three distinct phases are identified in the space of the
bare parameters. The RG flow for phases in which the intrinsic scale kSG of
the corresponding phases of the sine-Gordon model (SGM) is larger than the
mass, exhibits features similar to those of the RG flow for the SGM, and the
effective potentials of these phases appear as IR fixed points.

PACS numbers: 11.10.Hi, 11.10.Kk

1. Introduction

One of the main achievements of the renormalization group (RG) method is the prediction
of universality classes, family of theories which may differ on microscopical, ultraviolet
(UV) scales but agree on long distances. This feature arises by a simple argument, the
classification of the scaling laws, the dependence of the effective parameters of the theories
on the observational scale. It is worthwhile noting that such a study is usually carried out
in the UV regime but the observations supporting universality are made at long distances, in
the infrared (IR) regime. Universality, the convergence of the RG trajectories becomes more
robust if the UV scaling regime extends more.

Is this prediction independent of the IR scaling laws? The affirmative answer to this
question usually comes from a tacit assumption, namely on the triviality of the IR scaling
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laws around the Gaussian fixed point. By triviality we mean that the only relevant operator
is Gaussian, it is actually the mass term. In fact, the fluctuations are suppressed for distances
beyond the correlation lengths, the Compton wavelengths of the massive excitations and the
scale dependence of the effective interaction strengths slows down at such distances. Since
relevant coupling constants around the IR fixed point induce runaway trajectories there is no
room for interaction-induced accumulation in effective coupling strengths in the IR regime.
The Gaussian operators are exception to this rule. In the case of a traditional kinetic energy
whose coefficient is kept invariant by definition the only relevant operator is the mass. Once
the RG trajectories have converged during the UV scaling regime they remain close after
traversing the crossover located around the correlation length which separate the UV and IR
scaling regimes. The only difference which remains from the different microscopical initial
conditions is the value of the IR relevant parameter, the mass, in other words an overall scale
factor.

Are there other exceptions to the triviality of the IR scaling regime? Certain classically
scale invariant models for which the rudimentary argument outlined above is inapplicable
may produce non-trivial IR scaling laws. For example, asymptotically free theories
must display fundamentally different UV and IR scaling laws even though the explicit,
mathematically acceptable demonstration of this property remains to be seen. The goal
of this work is to give another class of models where the IR scaling laws differ from the UV
ones in a non-trivial manner.

Massless, superrenormalizable theories which are plagued by collinear, IR divergences
are known to require a partial resummation of the perturbation series [1], the precursor of
major changes in scaling laws. Therefore massless theories indeed do generate non-Gaussian
IR fixed point but with non-perturbative scaling laws, beyond the reach of simple studies.
For such theories dynamics may generate an intrinsic scale by dimensional transmutation, at
which the scaling laws change.

There is however also another possibility of inducing non-trivial IR scaling laws even
around the Gaussian fixed point. The starting point is the observation that it is the classical
dimension which determines the scaling laws around the Gaussian fixed point in the framework
of the loop expansion. The classical dimension of the variable ∂mφn in d dimensions is
m + n(d − 2)/2 in mass unit. Higher powers of the derivative or higher powers of this
expression in an effective vertex lead to faster suppression of the corresponding effective
coupling constant for d > 2. The gap in the scaling dimensions around its minimal value,
corresponding to m = 0 and n = 1 requires the departure from the vicinity of the Gaussian
fixed point in order to establish new, substantially different scaling laws. The straightforward
idea is to suppress this gap by considering d = 2 and to try to exploit the infinitely
degenerated spectrum of the two-dimensional theories in order to cook up non-trivial scaling
laws.

We are looking for a principle to lump together infinitely many non-derivative vertices of
the type φn for the number of spacetime dimensions d = 2. The simplest argument should
come from symmetry reasoning for a local potential U(φ). For a single component real scalar
field the natural symmetry is periodicity,

U(φ + �) = U(φ), (1)

the fundamental symmetry π1[U(1)] of the configuration space, with the constant shift � of
the field variable. For a non-periodic potential all coupling constants have the same scaling
dimension as the mass square in two dimensions. At the same time the sine-Gordon model
(SGM) is known to support different scaling laws due to the periodicity and also exhibits
an intrinsic scale kSG below which the IR scaling laws appear. We shall therefore study
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the competition of the scaling laws arising from the non-periodic mass term and a periodic
potential in two-dimensional models. In other words, we inspect the competition between the
explicit breaking of periodicity and the periodicity induced dynamics generating the intrinsic
scale kSG.

The mass term, added to the sine-Gordon Lagrangian breaks the symmetry (1) explicitly.
This symmetry breaking should correspond to a phase transition. In order to see this we note
that the scaling dimensions of an elementary vertex differ by a finite amount in the aperiodic
massive model (−2) and in the periodic SGM. The different speed of the scale dependence
induces substantially different effective IR vertices in this manner in the presence or absence
of the symmetry (1) even for the approximately same microscopical initial conditions. This
is after all the generic mechanism to explain the appearance of phase transitions at the point
where formal symmetries are lost or restored dynamically.

Our goal in this work is to map out the phase structure of the SGM and that of the massive
sine-Gordon model (MSGM) and to determine the IR scaling laws. Although the confining
features of the vacuum of the MSGM have been thoroughly investigated [2, 3], there is a lack
of determination of the relevant operators of the low-energy effective theory. It is worthwhile
mentioning that the differential RG method in momentum space with the sharp moving cut-off
(i) is adequate to determine the effective theories at various energy scales for a given bare
theory, and finally the low-energy effective theory for arbitrary values of the parameter β2

[4–6] and (ii) enables one to treat models with condensates in the vacuum. For the latter the
sharp cut-off is crucial, since it allows one to treat differently the modes above and below
the condensation scale. Namely, the condensation is signalled by non-trivial saddle points in
the path integral for the modes below the condensation scale, the so-called spinodal instability
and results in tree-level renormalization [7, 8]. Furthermore, the functional RG method used
here enables one to treat the periodic piece of interaction without Taylor expansion, i.e. without
violating periodicity and to follow up the RG flow of infinitely many Fourier amplitudes of
the periodic potential.

The phase structure of the sine-Gordon-type models are more than pure field-theoretic
issues, since e.g. the layered sine-Gordon model [9] is an adequate treatment for the
vortex dynamics of the high transition-temperature superconductors, or MSGM is capable of
describing the vortices in a two-dimensional (2D) superconductor in the presence of magnetic
field [10]. The critical behaviour of vortices in superconducting layers can be treated by
the SGM. Due to the magnetic field the logarithmic interaction is valid only up to a length
scale at which point it approaches a constant. The dynamically arising intrinsic scale in the
system behaves just as a mass scale; thus the proper model to treat this effect is the MSGM.
For the first glance the phase structure of the MSGM might seem to be trivial, since all the
couplings are relevant in the IR limit due to the finite mass [4]. However, the RG treatment
generates infinitely many higher frequency Fourier amplitudes into the self-interaction term.
The fact that all the couplings are IR relevant strongly implies that they are not independent.
To get a correct picture for the phase structure of the MSGM one has to investigate the
effective potential as the function of the bare couplings. Different dependences of the IR
couplings on the bare ones and/or the different relations among the IR couplings mean different
phases.

This paper is organized as follows. In section 2, the differential RG in momentum space is
applied in the local potential approximation (LPA) to the MSGM. In section 3 the UV scaling
laws are derived analytically. The numerical methods used to determine the RG flow of the
blocked potential are discussed in section 4. Section 5 contains the discussion of our results on
the blocked potential in the crossover and the IR scaling regions for the SGM and the MSGM,
as well. Finally, our findings are summarized in section 6.
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2. Blocked potential

The blocked potential is obtained with the help of the differential RG in momentum space,
restricting ourselves to the lowest order of the gradient expansion, the LPA. RG in momentum
space is one of the methods which are applicable to the determination of the effective theory,
the blocked action at the gliding momentum scale k ∈ [0,�] belonging to a given bare theory
at the UV cut-off �. In this approach the field fluctuations are classified according to their
frequencies and the blocking is performed by integrating out the high-frequency modes above
the cut-off k. The blocked action Sk at the scale k is defined via

e−Sk [φ] =
∫

D[φ′] e−S�[φ+φ′] (2)

keeping the generating functional invariant,

Z =
∫

D[φ]
∫

D[ϕ] e−S�[φ+φ′] =
∫

D[φ] e−Sk[φ], (3)

where S� denotes the bare action, and the field variable is decomposed into the high-
frequency modes φ′

x = ∫
|p|>k

φp eipx and the low-frequency ones φx = ∫
0�|p|�k

φp eipx .
In the differential RG in momentum space the high-frequency modes are integrated out step
by step in infinitesimal momentum shells of thickness �k,

e−Sk−�k [φ] =
∫

D[φ′] e−Sk [φ+φ′], (4)

where the field variable φ′
x = ∫

k−�k�|p|�k
φp eipx contains only modes with momenta from

the infinitesimal momentum shell of radius k. The higher-frequency Fourier modes are
splitted further into the sum of the saddle point field configuration φcl and the remaining field
fluctuations ϕ:

φ′ = φcl + ϕ. (5)

In order to evaluate the blocked action in equation (4), we expand the blocked action in Taylor
series around its saddle point field configuration

Sk[φ + φ′] = Sk[φ + φcl] +
1

2

∫
p1,p2

ϕp1S
(2)
k (p1, p2)ϕp2 + O(ϕ3), (6)

where S
(2)
k (p1, p2) = δ2Sk/δφp1δφp2 . It can be shown [6, 11] that the higher order terms in

the expansion can be neglected, since they give higher order contributions in �k/k. Therefore
the functional integral on the rhs of equation (4) becomes Gaussian and can be performed
exactly in the limit �k → 0. From equation (6) one arrives at a difference equation for the
blocked action

1

�k
(Sk[φ + φcl] − Sk−�k[φ]) = − h̄

2�k
Tr′ ln S

(2)
k , (7)

where the trace Tr′ is taken over the modes with momenta in the momentum shell [k −�k, k].
One can distinguish two different cases according to the value of the saddle point φcl :

(i) When the saddle point is trivial, i.e. it lies at φ′
x = 0, then equation (7) becomes an

integro-differential equation for the blocked action

∂kSk = − lim
�k→0

h̄

2�k
Tr ln S

(2)
k . (8)

We note that the saddle point φcl of the path integral remains trivial as long as the second
functional derivative of the blocked action is positive definite.
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(ii) When the restoring force for the field fluctuations with momenta from the momentum
shell k −�k < |p| < k vanishes, i.e. S

(2)
k = 0, their amplitudes can grow to finite values,

and φcl becomes non-vanishing. This is the so-called spinodal instability. In this case
one obtains the tree-level blocking relation [6, 12]

Sk−�k[φ] = min
φ′

(Sk[φ + φ′]) = Sk

[
φ + φcl

x

]
, (9)

where the minimum is sought over the field configurations φ′
x including only Fourier

modes with momenta from the infinitesimal momentum shell k − �k < |p| < k.

In order to convert the functional differential equation to much simpler coupled differential
equations, one has to impose an ansatz for the blocked action. We use the local potential
approximation (LPA) for the blocked action which is the leading order of the gradient expansion

Sk =
∫

x

[
1

2
(∂µφx)

2 + Vk(φx)

]
. (10)

Depending on the value of the saddle point φcl of the path integral one can obtain different
evolution equations for the blocked potential.

(i) For vanishing saddle point one arrives at the exact Wegner–Houghton RG (WHRG)
equation [11] for the blocked potential

k∂kVk(φ) = −αdk
d ln

(
k2 + V ′′

k (φ)

k2

)
, (11)

where V ′′
k (φ) = ∂2

φVk(φ) and αd = 
d/2(2π)d with 
d being the entire solid angle in the
d-dimensional momentum space. In order to remove the trivial scale dependence of the
coupling constants, the WHRG equation (11) has to be rewritten in terms of dimensionless
quantities. For the number of dimensions d = 2 the field variable is dimensionless and
one finds

(2 + k∂k) Ṽk(φ) = −α2 ln(1 + Ṽ ′′
k (φ)), (12)

where Ṽk = k−2Vk has been introduced and α2 = 1/4π .
(ii) In the case of non-vanishing saddle point, when we restrict ourselves to the search of

the minimum among the plane waves in the spatial direction, equation (9) reduces to the
equation

Ṽk−�k(φ) = min
ρ

[
ρ2 +

1

2

∫ 1

−1
du Ṽk(φ + 2ρ cos(πu))

]
(13)

in LPA [7], where the minimum should be sought for the amplitude ρ of the plane wave.

For the blocked potential of the MSGM we make the particular ansatz

Vk(φ) = 1
2M2

k φ2 + Uk(φ) (14)

which contains the periodic potential

Uk(φ) =
∞∑

n=1

un(k) cos(nβφ) (15)

besides the quadratic mass term. It is easy to show that the RG flow keeps the
functional subspace of the blocked potentials defined by the ansatz (14) invariant. If the
loop renormalization of equation (11) is applicable, then its right-hand side containing
the second derivative V ′′

k (φ) is purely periodic. Therefore the blocking keeps the mass
M2

k = M2 unchanged, affects only the evolution of the periodic potential Uk(φ) and does not
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generate any additional non-periodic interaction terms. In the region of spinodal instability
equation (13) is valid. The integral in its right-hand side can be rewritten as the sum of terms
quadratic and periodic in the field variable φ. Therefore the minimization with respect to ρ

results in a blocked potential which keeps the form of the ansatz (14). The mass term remains
unaltered again. Thus the mass is a relevant parameter at all scales, for which the tree-level
scaling law

M̃2
k = M̃2

�

(
k

�

)−2

(16)

holds in the LPA. Both equations (11) and (13) keep the parameter β, i.e. the period of the
potential Uk(φ) unaltered in the LPA.

3. UV scaling

The non-periodic mass term influences the dynamics weakly at high energies and its importance
grows gradually as the energy decreases. The first approximate glance into the impact of the
mass term on the renormalized trajectory can therefore be obtained by considering the scaling
relations in the UV regime, � > k � M .

The bare theory is given by the initial conditions for the RG equations imposed at the UV
cut-off which is chosen large enough, �2 � |V ′′

�|. Therefore, in the asymptotic UV scaling
regime k ≈ � the logarithm in the right-hand side of the WHRG equation (11) can be well
approximated by the first term of its Taylor series, keeping the leading order correction in
the ratio M/k in order to incorporate the effect of the mass term [12, 14]. Apart from an
unimportant, field-independent constant term one obtains

(2 + k∂k)Ũ k ≈ − α2Ũ
′′
k

1 + M2

k2

(17)

for the periodic part of the potential. It is enlightening to rewrite this equation as a set of
independent ordinary linear differential equations for the dimensionless couplings,

k∂kũn(k) =
(

α2β
2n2

1 + M2

k2

− 2

)
ũn(k) (18)

with n > 0. It shows in a clear manner that the mass-dependent correction prevents the
right-hand sides from being vanishing for any value of β2 and n. The solution of this
equation is

ũn(k) = ũn(�)

(
k

�

)−2 (
k2 + M2

�2 + M2

)β2n2/8π

. (19)

4. Numerical methods for the WHRG equations

Even in the LPA the determination of the low-energy effective theory for the MSGM represents
a non-trivial numerical problem. As discussed at the end of section 2, the problem reduces to
the determination of the RG flow of the periodic potential when the ansatz (14) is used. It has
been demonstrated for the SGM [12] that the usual strategy to obtain RG flow equations for the
coupling constants based on the Taylor expansion of the blocked potential, violates periodicity
and leads to incorrect IR behaviour. Therefore, one has to use the method developed in
[12, 14] which retains the symmetry of the periodic part and relies on its Fourier expansion
(15) in the internal space.
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In order to obtain the coupled set of RG flow equations for the coupling constants of the
MSGM it is more convenient to take the first derivative of both sides of equation (12) with
respect to the field variable φ,

(2 + k∂k)Ṽ
′
k(φ) = −α2

Ṽ ′′′
k (φ)

1 + Ṽ ′′
k (φ)

. (20)

Equation (20) can be satisfied if and only if the periodic and non-periodic terms on its both
sides are identical separately. No evolution arises for the dimensionful mass (cf equation (16)),
for the only non-periodic term of the ansatz (14). The periodic part of the blocked potential
evolves according to the equation[

1 + M̃
2
k + Ũ

′′
k(φ)

]
[2 + k∂k]Ũ

′
k(φ) = −α2Ũ

′′′
k (φ). (21)

By inserting the dimensionless form of equation (15) into equation (20) we get a coupled set
of ordinary differential equations for the dimensionless Fourier amplitudes,

(
1 + M̃2

k

)
(2 + k∂k)nũn(k) = α2β

2n3ũn(k) +
β2

2

N∑
s=1

sAn,s(k)(2 + k∂k)ũs(k), (22)

where An,s(k) = (n − s)2ũ|n−s| − (n + s)2ũn+s and N represents the number of Fourier modes
taken into account. These equations have been solved numerically.

The WHRG equation loses its validity at some finite momentum scale kc �= 0 because
the argument of the logarithm vanishes or becomes negative, indicating tree-level instabilities.
The RG trajectory should then be followed for k < kc by the help of the tree-level blocking
relation (13) which can be rewritten for the periodic part of the blocked potential as

Ũ k−�k(φ) = min
ρ

[(
1 + M̃

2
k

)
ρ2 +

∞∑
n=1

ũn(k) cos(nβφ)J0(2nβρ)

]
, (23)

where J0 stands for the zeroth order Bessel function. The minimum of the bracket on the
right-hand side was found numerically. The Fourier amplitudes at the lower scale k − �k

was determined also numerically by making use of the orthogonality and completeness of the
Fourier modes. Let us emphasize again that the period � = 2π/β in the internal space is kept
constant in each step of the tree-level blocking because the expression to be minimized in ρ is
periodic in the internal space, together with the position of the minimum, ρk(φ) = ρk(φ + �),
and the resulting blocked potential Ũ k−�k(φ) = Ũ k−�k(φ + �).

By relying on our experience obtained by solving the similar numerical problem for the
SGM, equation (22) was integrated by a C++ code starting from the UV cut-off � = 1 down
to the critical value k2

c (φ) = −∂2
φVkc

(φ) by means of the fourth-order Runge–Kutta algorithm
and the values �k/k = 10−p with p = 3 or p = 4. There were no appreciable changes in
the numerical results by increasing p further. Furthermore we found that the change in the
scaling of the first few couplings is negligible by increasing N above 10. In order to determine
the scaling of the coupling constants below the critical scale kc a computer algebra code has
been developed using the symbolic programming language Mathematica to solve the tree-level
blocking relation (23).

Numerical calculations have been performed for various initial conditions and showed
that there is a region in the parameter space (M2/�2, β2/π) where spinodal instability occurs
along the RG trajectory at some critical scale kc. No spinodal instability occurs for sufficiently
large mass parameter, M2 > M2

c but there is a lower and an upper critical value, β2
l (M2) and

β2
u (M2), respectively when M2 < M2

c and the spinodal instability is present (absent) inside
(outside) of the interval β2

l (M2) < β2 < β2
u (M2).
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Figure 1. The region of the spinodal instability for the number of Fourier modes N = 1 (shaded
area) and N = 10 (dark area) of the periodic potential, with the choice u1(�) = 0.001.
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Figure 2. The value of β2 where the spinodal instability starts in the SGM as the function of the
number N of Fourier modes traced numerically during the evolution.

It is instructive to determine the boundary of the spinodal instability for the MSGM
restricted to the first Fourier amplitude. This amounts to solving the equation

k2 + M2 + U ′′
k (φ) > 0 (24)

together with equation (19) for n = 1. The result is

k2
c = (�2 + M2)

(
�2 + M2

β2u1(�)

) 8π

β2−8π

− M2 (25)

when β2 < 8π which is depicted in figure 1. But the coupling constant of the first Fourier
mode is relevant for β2 < 8π according to equation (19) and its growth in the IR regime
renders the truncation of the Fourier series unstable. In fact, the phase boundary, obtained
numerically with N = 10 and shown by dotted line in figure 1 indicates a strong dependence
on the truncation which gradually disappears as β → 0 due to the factor β2 on the right-hand
side of equation (19).

In order to see better what happens slightly below β2 = 8π we show in figure 2 the
dependence of the value β2 where the spinodal instability sets in for the SGM on the order of
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Figure 3. The IR value of the first Fourier amplitude for the sine-Gordon model.

truncation, N. The lesson of this figure is that the Fourier series converges slowly in this phase
and one needs rather high order in the truncation to stabilize the results.

The dimensionful effective potential of the SGM is approaching zero for every value of
β2. However one can find differences if one considers the form of the dimensionless potential.
The phase structure of the SGM model can be seen clearly by following the β-dependence of
the value of the coupling constant ũ1 at k = 0, shown in figure 3. We can distinguish two
distinct regions along the β2 axis.

(i) β2 > β2
c = 8π . Ũ k→0 → 0, the dimensionless couplings scale as

ũn(k → 0) ∼ kn(
β2

4π
−2) (26)

in the IR limit and the asymptotic behaviour ũn(k → 0) are given by the first Fourier
mode ũ1(k) only for any n [15].

(ii) β2 < β2
0 . The asymptotic IR form of the effective potential becomes independent of the

choice of the bare coupling constants un(�), while the IR values ũn(0) do not vanish.
The effective potential is expected to take the form

Ũ k→0 = − 1
2φ2, (27)

for φ ∈ [−π/β, π/β] [7], and the IR values ũn(0) can be obtained from the Fourier series
of the periodic potential consisting of similar parabola sections set forth along the φ-axis
periodically. The value of ũ1(0) depends strongly on the truncation for 5.2π < β2 < 8π

(cf figure 2) and the irregular feature of the solid line in figure 3 in this interval should
disappear as N → ∞.

It is worthwhile noting that both in the phase with spinodal instability an intrinsic scale kSG

is generated dynamically at which the evolution receives tree-level contributions and below
which the couplings ũn(k) are scale independent.

5. The massive sine-Gordon model

The phase boundaries in the MSGM are more involved than those of the SGM due to their
mass dependence, witnessed by equation (25) or figure 1. The actual IR scaling laws for the
MSGM had to be determined numerically. Calculations for the RG flow have been performed
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Figure 4. RG flow of the first few Fourier amplitudes of the periodic part of the blocked potential
for β2 = 12π and M2 = 0.003. The dotted and the dashed lines indicate the scaling law ∼ k−2

and the scale k = M , respectively.

for various values of the bare parameter β2. Various initial conditions for the bare couplings
ũn(�) were chosen. The magnitude of the dimensionless couplings |ũn(k)| is plotted in
figure 4. On the log–log plot the sharp minima of the curves correspond to ln|ũn| → −∞
accompanied with the changes of the signs of the couplings ũn.

The flow diagrams reveal the following qualitative features:

(i) The asymptotic UV scaling region for M 	 k the coupling constants follow the scaling
laws where the mass dependence turns on gradually as k is decreased as in equation (19).
In particular, one finds the mass-independent exponents α2n

2β2 − 2. For example all
coupling constants are UV irrelevant in figure 4.

(ii) There is an IR scaling region for k 	 M . Quantum fluctuations with momenta
|p| < M are frozen out and cannot alter the physics any more. Therefore the tree-level
trivial scaling of the dimensionless couplings |ũn(k)| ∼ k−2 characterizes this region
[10, 16, 17]. Correspondingly, a non-vanishing dimensionful periodic potential is left
over as k → 0. This should be contrasted with the massless SGM where the dimensionful
periodic potential is washed out completely in the IR limit due to the requirement of
periodicity and convexity [12].

The scaling |ũn| ∼ k−2 can be made plausible also by a simple analytic consideration.
Namely, one can show that equation (22) rewritten as

∑
s

Bn,sk∂kũs(k) =
∑

s

[
−2Bn,s +

α2β
2n3k2

k2 + M2

]
ũs(k), (28)

with Bn,s = sδn,s − 1
2 sβ2k2An,s/(k

2 + M2) supports the assumption ũn(k) = un(0)k−2.
Indeed, one obtains that Bn,s is of order k0, while the second term in the right-hand side
of equation (28) can be neglected for k 	 M , so that one recovers

ũn(k) ∼ un(0)k−2+ηn ∼ un(0)k−2 (29)

for the IR scaling law.
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Figure 5. The phase structure of the massive sine-Gordon model.

(iii) The scaling laws in the crossover, between the UV and the IR regimes are determined by
the mass M and the intrinsic scale kMSG where the tree-level contributions to the scaling
laws set in. When M < kMSG then non-trivial saddle points appear during the evolution
for k < kMSG and they become suppressed by the mass around k ≈ M . If kMSG < M then
the tree-level evolution is altogether suppressed and the UV scaling continues directly in
the massive IR scaling laws after a short crossover. Below the UV scaling region but
above M or kMSG one finds several changes of the signs in the coupling constant ũn(k) for
n � 2 due to the nonlinear terms of the RG flow equation.

Although the coupling constants of the MSGM are relevant in the IR limit and their
scaling always satisfies ũn(k) ∼ k−2 for k 	 M , it does not necessarily mean that the MSGM
exhibits only a single phase. It matters how the IR region is achieved and the phase transitions
are identified by investigating the dependences of the IR coupling constants on their bare UV
values and/or the relations among the IR coupling constants. The effective potential can be
obtained by integrating out all the modes of the scalar field in the generating functional and
it depends on the IR limiting values of the coupling constants only. What we have to do is to
express the IR limiting values of ũn(k → 0) in terms of the bare coupling constants and locate
phase transitions as singularities in these functions.

Let us now turn to the quantitative details. We restrict our considerations for a small,
fixed value of M2/�2 = 10−9. As opposed to the SGM one needs now the two-dimensional
plane (β2, ũ1(�)) to map the phase structure out. There are two lines shown in figure 5 which
separate the phases. The dashed line depicts a phase boundary at β2

c = 8π and the solid
line shows a phase boundary lying at β2-dependent critical values ũ1C(�). These curves split
the plane (β2, ũ1(�)) into three regions, distinguished by the different IR behaviour of the
dimensionful effective potential of equation (15).

(i) β2 > 8π . Region I corresponds to the large β2 phase of the SGM with the modification
that the scaling laws are modified for k < M . We found no evidence of further phase
separations in this region at different values of ũ1(�).

(ii) β2 < 8π and ũ1C(�) < ũ1(�). Region II also inherits the properties of the SGM
because the coupling constants are strong enough to generate an intrinsic scale by
saddle-point formation at high enough kinetic energy, i.e. kMSG > M . The saddle
points of the blocking become trivial at lower scales, k < M and the scaling laws
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Figure 6. RG flow of the first Fourier amplitude of the periodic part of the blocked potential for
several values of ũ1(�), β2 = 4π and M2 = 10−9. When the renormalized trajectories reach
the horizontal dashed line then spinodal instability sets in and the potential receives universal,
ũ1(�)-independent contributions.

display the trivial, massive evolution towards the IR end point. The potential of the
blocked action receives contributions which are independent from the value of the initial
ũ1C(�) but the evolution below the mass gap, k < M , generates β and M-dependence,
cn = un(k → 0)/(−u1(k → 0))n = Fn(β

2,M). The universality can be represented by
some RG flows, see figure 6. The solid lines show that flows of the first coupling starting
from ũ1(�) value which belongs to region III.

(iii) β2 < 8π and ũ1(�) < ũ1C(�). As ũ1(�) is decreased kMSG reaches the mass scale
and the tree-level evolution remains trivial along the full renormalized trajectory. The
SGM-type scaling gives rise to the trivial massive IR scaling laws in this region and the
effective potential displays dependence on each parameter of the bare action.

In figure 6 the dotted line shows such a flow which avoids the spinodal instability.

The fundamental group symmetry is broken explicitly in the MSGM by the mass term and
a non-vanishing dimensionful effective potential is left over in the limit k → 0 independently
of presence or absence of spinodal instabilities during the evolution. The effective potential is
the sum of the mass term and a non-trivial periodic piece. Our numerical results suggest that
the amplitude of the periodic modulation of the second derivative of the potential is sufficiently
small as k → 0 to preserve the convexity of the effective potential.

There is no saddle point in the IR regime as k → 0 in the MSGM due to the mass term
which breaks explicitly the fundamental group symmetry. Nevertheless the vacuum carries the
consequences of the saddle points when they appear within a window of scales, M < k < kMSG.
Namely, at the lower end of this interval the coupling constants ũn(M) are independent of
ũ1(�) and their further evolution according to the scaling law ũn(k) = (k/M)−2ũn(M) gives
rise to a universal dimensionless effective potential in the deep IR region. Then a non-
vanishing, universal dimensionful blocked potential survives the IR limit k → 0 with the
coupling constants un(0) = un(M). As opposed to this situation, the effective potential shows
dependence on each bare parameter of the action in the absence of tree-level evolution.
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6. Summary

Using the differential renormalization group approach in the momentum space with a gliding
sharp cut-off we determined the effective potential for the massive sine-Gordon model in
the local potential approximation. Although many Fourier amplitudes of the periodic piece
of the effective potential were taken into account, our numerical results showed that the
effective potential depends at most on the bare value of the first Fourier amplitude ũ1(�).
One can distinguish three different regions, phases, on the plane (β2, ũ1(�)), separated by
singular dependence of the IR values of the coupling constants expressed in terms of the UV
parameters of the model. It has been argued that the competition between the explicit breaking
of periodicity by the mass term and the periodic dynamics responsible for the intrinsic scale
kSG of the corresponding SGM hides behind the rich phase structure. If the intrinsic scale
kSG of the SGM exceeds the mass scale M, the effective potential of the MSGM reflects some
features of the effective potential of the SGM. A detailed and extensive numerical analysis is
in progress in order to clarify further peculiarities of the phases outlined above.

Acknowledgments

S Nagy thanks István Nándori for useful discussions. This work has been supported by
OTKA M041537 and the Supercomputing Laboratory of the Faculty of Sciences, University
of Debrecen.

References

[1] Jackiw R and Templeton S 1981 Phys. Rev. D 23 2291
[2] Coleman S R 1975 Phys. Rev. D 11 2088

Coleman S R 1976 Ann. Phys. 101 239
Coleman S R, Jackiw R and Susskind L 1975 Ann. Phys. 93 267

[3] Nagy S, Sailer K and Polonyi J 2004 Phys. Rev. D 70 105023
[4] Wilson K G and Kogut J 1974 Phys. Rep. C 12 77
[5] Wilson K G 1975 Rev. Mod. Phys. 47 773

Wilson K G 1983 Rev. Mod. Phys. 55 583
[6] Polonyi J 2004 Central Eur. J. Phys. 1 1–71
[7] Alexandre J, Branchina V and Polonyi J 1999 Phys. Lett. B 445 153–356

Polonyi J 2005 Preprint hep-th/0509078
[8] Alexandre J and Polonyi J 1999 Preprint hep-th/9906017
[9] Pierson S W 1995 Phys. Rev. Lett. 74 2359

Pierson S W 1997 Phys. Rev. B 55 14536
Pierson S W and Valls O T 1992 Phys. Rev. B 45 13076
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